Isopropyl Palmitate
Phân loại:
Thành phần khác
Mô tả:
Isopropyl Palmitate là gì?
Isopropyl Palmitate là một hợp chất được chiết xuất từ dầu cọ hay mỡ động vật. Isopropyl Palmitate không màu, không mùi và có khả năng làm mềm lan truyền nhanh.
Thành phần này có mặt trong các loại mỹ phẩm chăm sóc da như kem chống nắng, kem dưỡng ẩm, lăn khử mùi, nước hoa,… với vai trò là một chất làm đặc cho sản phẩm. Isopropyl Palmitate cũng có thể hoạt động như chất làm mịn giống silicon nên khi sử dụng da sẽ mềm mại và cảm giác lỗ chân lông được che phủ hơn.
Điều chế sản xuất Isopropyl Palmitate
Mặc dù có thể chiết xuất từ dầu cọ tự nhiên nhưng Isopropyl Palmitate trong mỹ phẩm hiện nay đều được điều chế từ phản ứng este hóa giữa metyl và rượu isopropyl. Đây là một hợp chất có thể tan trong dầu nhưng không tan trong nước.
Dược động học:
Dược lực học:
Xem thêm
Octyldodecanol là gì?
Octyldodecanol viết tắt của 2-octyl dodecanol là một dung môi hòa tan chất béo, không màu, không mùi, lỏng sệt, tan hoàn toàn trong dầu nền, cồn nhưng không tan trong nước.
Đây cũng là chất được dùng phổ biến trong các công thức mỹ phẩm bởi đặc tính ổn định trong nền sản phẩm và có phổ pH rộng, dễ dàng kết hợp với các hoạt chất khác. Octyldodecanol là chất giữ ẩm cho da và tóc, ổn định các loại kem và là dung môi cho các thành phần nước hoa, Acid salicylic.
Riêng với các sản phẩm chăm sóc tóc, Octyldodecanol thường được sử dụng như một chất làm mềm, chất nhũ hóa, chất tăng kết cấu và chất chống tạo bọt.
Tuy nhiên, khi áp dụng Octyldodecanol trong mỹ phẩm tuyệt đối phải áp dụng tiêu chuẩn CGMP mới đảm bảo chất lượng và độ an toàn khi sử dụng.
Điều chế sản xuất
Octyldodecanol được điều chế từ phản ứng chuyển nhóm cacboxyl (-COOH) của các loại dầu tự nhiên thành nhóm hydroxyl (-OH).
Cơ chế hoạt động
Octyldodecanol là một loại rượu béo chuỗi dài. Chất này có tác dụng như một chất làm mềm do độ ổn định thủy phân trong cấu trúc hóa học nên phù hợp cho các công thức cần có phạm vi pH rộng.
Octyldodecanol có tác dụng tạo nhũ tương và ngăn nhũ tương phân tách thành dầu và nước. Đây cũng là thành phần giúp cải thiện kết cấu của công thức sản phẩm, hoạt động như một chất chống tạo bọt và làm giảm xu hướng tạo bọt khi sản phẩm được lắc.
Lutein là gì?
Lutein là một carotenoid có trong tự nhiên được tổng hợp bởi thực vật, được tìm thấy dễ dàng trong các nguồn thực phẩm hàng ngày như rau dền, rau khoai lang, súp lơ xanh, cải xoăn, và cà rốt vàng. Lutein có công thức hóa học là C40H56O2, được xếp vào phân loại chất chống oxy hóa mạnh mẽ cùng với Zeaxanthin bởi chúng cùng có khả năng bảo vệ cơ thể chống lại tác nhân có hại, phân tử không ổn định và các gốc tự do.
Công thức hóa học của Lutein
Với đặc tính chống oxy hóa mạnh, Lutein giúp bảo vệ da chống lại các gốc tự do có hại có trong môi trường. Đây chính là đặc điểm nổi trội nhất của Lutein , do đó hợp chất này được phái đẹp khá ưa chuộng và bổ sung trong bữa ăn hàng ngày. Đặc biệt, các nghiên cứu đã chỉ ra rằng bằng cách giảm stress oxy hóa xảy ra trên da, việc thoa Lutein lên da giúp cải thiện độ ẩm cho da và chống lão hóa do tác nhân có hại và yếu tố tuổi tác.
Nhờ công dụng tuyệt vời, thành phần Lutein được tìm thấy trong nhiều loại mỹ phẩm dưỡng da cho phái đẹp. Để tận dụng triệt để quá trình chống oxy hóa, các dòng sản phẩm mỹ phẩm thường kết hợp các lợi ích của nhiều chất carotenoid trong đó có sự kết hợp giữa Lutein và Zeaxanthin.
Lutein giúp cải thiện khả năng giữ ẩm cho da và chống lão hóa tuổi tác
Điều chế và sản xuất Lutein
Bột Lutein vi năng được điều chế bằng phương pháp sấy phun sử dụng vật liệu bao gói là maltodextrin có hiệu suất bao gói cao (86,4%), tan tốt trong nước, có khả năng đáp ứng các chỉ tiêu chất lượng của Lutein trong thực phẩm.
Cơ chế hoạt động của Lutein
Lutein là hợp chất Carotenoid được phát hiện nhiều nhất trong não và điểm vàng của mắt. Trong cơ thể người, carotenoid đóng vai trò là chất chống oxy hóa cũng như là thành phấn thiết yếu cấu tạo nên cơ thể. Tuy nhiên, trở ngại của cơ thể người là không có khả năng tự tổng hợp Lutein mà phải bổ sung hợp chất này trong quá trình ăn uống và bổ sung các loại rau xanh, hoa quả có màu đậm hoặc qua các chất bổ sung khác.
Với da, Lutein đóng vai trò điển hình là chất chống oxy hóa, giúp da chống lại các tổn thương do gốc tự do gây ra bởi ánh sáng xanh hoặc tiếp xúc với ánh nắng mặt trời hoặc do chế độ ăn thiếu dinh dưỡng, không khoa học.
Lutein được tìm thấy trong rau dền, rau khoai lang, súp lơ xanh, cải xoăn và cà rốt vàng
Tên gọi, danh pháp
Tên Tiếng Việt: Na rừng
Tên gọi khác: Nắm cơm, Ngũ vị nam, Dây xưn xe,…
Tên khoa học: Kadsura coccinea (Lem) A. C. Smi (K.chinensis Hance). Ngũ vị – Schisandraceae.
Theo Y học cổ truyền, Na rừng có 2 loại là Na rừng đỏ và Na rừng trắng. Có một vài sự khác biệt nhỏ giữa 2 loại trên.
Na rừng đỏ: Loại quả chín sẽ có màu đỏ, mùi thơm rất đặc trưng, loại quả này có giá trị dược liệu hơn Na rừng trắng.
Na rừng trắng: Khi chín màu vàng nhạt, khe múi hơi đỏ, có giá trị dược liệu ít hơn.
Đặc điểm tự nhiên
Na rừng là cây dây leo, thân cứng, hóa gỗ, màu nâu đen, cành nhẵn. Lá mọc so le, phiến dày, hình bầu dục hoặc hình trứng, dài 10 – 12cm, rộng 4 – 5cm, gốc tròn, đầu nhọn, mặt trên mặt trên màu lục sẫm bóng, mặt dưới nhạt, có nhiều chấm trắng nhỏ.
Hoa khác gốc, mọc đơn độc ở kẽ lá; lá bắc dễ rụng; bao hoa gồm những phiến mập hình trứng, xếp thành 2 – 3 vòng, càng vào trong, phiến càng lớn hơn, màu trắng thơm, điểm vàng nâu ở đầu phiến; hoa đực có nhiều nhị mọc trên một cán ngắn, hoa cái có các lá noãn xếp rất sít nhau. Hoa thường có màu đỏ tím hay vàng.
Quả to, hình cầu, rất giống hình dáng tương tự như quả na nhưng kích thước to gấp đôi hoặc gấp ba lần quả na ta, khi chín màu vàng hoặc đỏ hồng, nhiều múi, múi rất to, dễ tách thành từng múi nhỏ, có mùi thơm nhẹ, ăn được.
Mùa hoa: Tháng 5 – 6, mùa quả: Tháng 8 - 9.
Phân bố, thu hái, chế biến
Loài na rừng phân bố ở vùng nhiệt đới hay nhiệt đới Nam Á và Đông Nam Á. Ở Việt Nam, có 4 loài mọc rải rác ở vùng núi từ 600m đến 1500m, ở các tỉnh Lào Cai, Hà Tây, Cao Bằng, Lạng Sơn… ở phía nam thấy ở Lâm Đồng. Trên thế giới cây phân bố ở một số khu vực núi cao trong vùng có khí hậu nhiệt đới hay á nhiệt đới của Ấn Độ, Lào và Nam Trung Quốc.
Na rừng thuộc loài cây cây leo quăn, thường xanh, ưa khí hậu ẩm mát đặc biệt ở vùng nhiệt đới núi cao. Cây ưa sáng hơi chịu bóng, thường mọc ở ven rừng hay rừng đá vôi. Cây ra hoa quả hàng năm nhưng số lượng hoa quả trên cây không nhiều. Ở vùng rừng quốc gia tam đảo có một khóm na rừng, mọc gần đường đi nên hay bị chặt phá, số cành non nhiều (ước tính dưới 1 năm tuổi) nên không thấy có hoa quả.
Na rừng có thể xếp vào nhóm cây thuốc tương đối hiếm gặp ở Việt Nam, cần chú ý bảo vệ.
Rễ Na rừng có thể thu hái và bào chế thuốc quanh năm.
Sau khi thu hái gốc cây Na rừng, mang về rửa sạch đất cát. Thái thành từng lát mỏng như Kê huyết đằng mang đi phơi nắng đến khi thật khô.
Bộ phận sử dụng
Vỏ rễ vỏ thân thu hái quanh năm, phơi khô.
Rễ và quả là bộ phận dùng làm thuốc của Na rừng.
Ubiquinol là gì?
Ubiquinol hay còn có tên gọi là Coenzyme Q10 (CoQ10) là một chất cần thiết cho cơ thể, duy trì hoạt động cho tế bào và có đặc tính chống oxy hóa mạnh mẽ.
Coenzyme là các phân tử nhỏ không chứa protein, cung cấp vị trí chuyển giao cho một enzym hoạt động, là thành phần quan trọng góp phần tạo nên chuỗi phản ứng hóa học trao đổi chất, từ đó tạo ra năng lượng bên trong tế bào.
Tuy nhiên, tuổi tác sẽ làm giảm khả năng sản sinh ra chất này. Theo nghiên cứu, khi cơ thể thiếu Ubiquinol sẽ gây nên các vấn đề về bệnh tim mạch, bệnh Alzheimer và nguy cơ bị ung thư.
Điều chế sản xuất
Ubiquinol là một chất hóa học được cơ thể tổng hợp một cách tự nhiên và được lưu trữ trong tế bào qua các ti thế. Ti thể là bộ phận giúp sản sinh ra năng lượng để bảo vệ tế bào khỏi quá trình oxy hóa, mắc các vi rút gây bệnh hoặc nhiễm khuẩn. Khi cơ thể già đi, quá trình sản xuất Ubiquinol bị giảm, do đó, những người cao tuổi dễ bị thiếu hụt Ubiquinol.
Bằng cách bổ sung Ubiquinol thông qua nguồn dinh dưỡng và thức ăn sẽ giúp cơ thể duy trì quá trình tổng hợp ra hợp chất này.
Các nguồn thực phẩm cung cấp Ubiquinol tốt nhất bao gồm:
- Nội tạng: Tim, thận, gan.
- Cá: Cá hồi, cá thu, cá trích, cá mòi…
- Các loại rau màu xanh đậm: Súp lơ, bông cải xanh, rau bina...
- Các loại đậu: Đậu nành, đậu phộng.
- Các loại hạt: Hạt dẻ cười, hạt vừng, hạt mè…
- Trái cây: Dâu tây, cam, táo, việt quất…
- Dầu: Dầu đậu nành, dầu hạt cải…
Ubiquinol trong thịt gia cầm và cá là nguồn tự nhiên phong phú nhất, đặc biệt là trong nội tạng. Đối với người ăn chay nói riêng, nguồn cung cấp Ubiquinol có thể là đậu, các loại hạt, một số loại rau, trứng, các sản phẩm từ sữa.
Cơ chế hoạt động
Ubiquinol hấp thu chậm và xảy ra ở ruột non. Khi Ubiquinol ở dạng khử sẽ được hấp thu tốt hơn từ 3 đến 4 lần so với dạng oxy hóa, Ubiquinone. Nếu được sử dụng cùng với thức ăn, chủ yếu là với lipid (dầu mỡ), sự hấp thu của Ubiquinol có thể được tăng lên vì cấu trúc ưa mỡ của nó. Sau khi được hấp thụ bởi các tế bào ruột, Ubiquinol đi qua các mạch bạch huyết và đến huyết tương, nơi nó lưu thông liên kết với lipoprotein (LDL). Do đó, các phép đo Ubiquinol trong huyết tương phải được hiệu chỉnh theo mức lipoprotein.
Pyridoxal phosphate là gì?
Dạng hoạt động sinh học của vitamin B6, pyridoxal phosphate (PLP), hoạt động như coenzyme trong khoảng 160 enzym khác nhau, chủ yếu tham gia vào chuyển hóa acid amin, carbohydrate và lipid và đóng vai trò quan trọng trong quá trình tổng hợp hoặc dị hóa của một số chất dẫn truyền thần kinh.
Ngoài ra, PLP hoạt động như phân tử chống oxy hóa bằng cách phá huỷ các dạng oxy hoạt động (ROS) ( Ehrenshaft và cộng sự, 1999 ) và chống lại sự hình thành các sản phẩm cuối glycation tiên tiến (AGEs), các hợp chất gây độc gen liên quan đến tuổi già và bệnh đái tháo đường. Động vật có vú, khác với vi sinh vật, không có khả năng tổng hợp PLP nhưng chúng tái chế nó thông qua một con đường cứu vãn từ các vitamin B6 như pyridoxal, pyridoxamine và pyridoxine có trong thực phẩm.
Trong tế bào chất, pyridoxamine và pyridoxine được chuyển đổi thành các vitamin 5'-phosphoryl hóa bởi pyridoxal kinase, trong khi pyridoxine 5'-phosphate oxidase phụ thuộc flavin mononucleotide chuyển pyridoxine 5′‐phosphate và pyridoxamine-5-Phosphate thành PLP.
Sự thiếu hụt vitamin B6 có liên quan đến một số bệnh bao gồm tự kỷ, tâm thần phân liệt, Alzheimer, Parkinson, động kinh, hội chứng Down, đái tháo đường và ung thư.
Điều chế sản xuất pyridoxal phosphate
PLP được điều chế thông thường bằng cách phosphoryl hóa pyridoxal hoặc các dẫn xuất của nó, chẳng hạn như Schitf-base của nó hoặc bằng quá trình oxy hóa pyridoxine-S-phosphate hoặc pyridoxamine-S-phosphate.
Cơ chế hoạt động
Các enzym PLP xúc tác nhiều kiểu phản ứng khác nhau trên cơ chất là amin và acid amin. Bước đầu tiên và phổ biến trong tất cả các phản ứng xúc tác pyridoxal phosphat là hình thành chất trung gian aldimin bên ngoài với cơ chất.
Điều này xảy ra thông qua một loạt các bước trong đó nhóm amin chưa được proton hóa của chất nền phản ứng với Schiff-base đã được proton hóa, hình thành giữa chuỗi bên lysine ở vị trí hoạt động và nhóm aldehyde của PLP, tiếp theo là chuyển proton và tách thành Schiff-base giữa chất nền và PLP, chất trung gian aldimine bên ngoài. Tất cả các enzym phụ thuộc PLP đều có điểm chung là chất trung gian aldimine bên ngoài và chính từ chất trung gian này mà các loại phản ứng khác nhau được xúc tác bởi PLP sẽ khác nhau.
Sắt pyrophosphate là gì?
Sắt pyrophosphate (Ferric pyrophosphate) là một sản phẩm thay thế sắt. Công thức hóa học là Fe4(P2O7)3.
Bạn thường hấp thu sắt vào cơ thể từ thực phẩm bạn ăn. Sắt là một khoáng chất đóng vai trò quan trọng trong việc tạo ra các tế bào hồng cầu, mang oxy từ phổi đến phần còn lại của cơ thể.
Sắt là một trong những nguyên tố vi lượng cần thiết cho dinh dưỡng của con người. Tuy chỉ chiếm 0,006% trọng lượng cơ thể, tức là một người trưởng thành chứa khoảng 4,0g sắt nhưng vô cùng quan trọng. Sắt trong cơ thể con người liên kết với protein và không có trạng thái tự do. Khoảng 3/4 lượng sắt được liên kết với O2 trong hồng cầu mang oxy đến các tế bào.
Ngoài ra còn có myoglobin phân bố ở các cơ của toàn cơ thể, trong khi sắt dự trữ được ở gan, lá lách, tủy xương, cơ xương, niêm mạc ruột, thận và các mô khác dưới dạng ferritin và hemosiderin.
Tùy thuộc vào mức độ thiếu máu mà người bệnh sẽ có những dấu hiệu như:
- Mệt mỏi, chóng mặt, hoa mắt, giảm trí nhớ, chán ăn, đau ngực, khó thở nhất là khi gắng sức hoặc đi lại nhiều, hồi hộp, đánh trống ngực.
- Da xanh, niêm nhợt, móng tay khô dễ gãy, tóc khô xơ dễ rụng, mất kinh hoặc kinh nguyệt không đều.
Sắt tự do gây ra một số tác dụng phụ vì nó có thể xúc tác cho sự hình thành gốc tự do và quá trình peroxy hóa lipid cũng như sự hiện diện của các tương tác giữa sắt trong huyết tương. Sắt pyrophosphate là dạng không hòa tan, có thể nhẹ hơn trong đường tiêu hóa và có sinh khả dụng cao hơn.
Sắt pyrophosphate được sử dụng để điều trị tình trạng thiếu sắt ở những người mắc suy thận mạn đang chạy thận nhân tạo.
Thiếu sắt ở bệnh nhân chạy thận nhân tạo xảy ra với tần suất lớn và do mất máu liên tục do máu bị ứ đọng trong quả lọc máu và đường lọc máu, thường xuyên phải lấy máu để xét nghiệm và một lượng mất máu qua đường tiêu hóa do hội chứng ure huyết cao.

Điều chế sản xuất Sắt pyrophosphate
Sắt (III) photphat, hay sắt pyrophosphate, là một hợp chất hóa học vô cơ có công thức Fe(PO)(OH). Nó còn được gọi là sắt tetrapolyphosphate. Nó được tìm thấy tự nhiên trong một số loài tảo. Nó được sử dụng trong thức ăn chăn nuôi và phân bón như một nguồn bổ sung sắt. Chất rắn kết tinh màu đen này hòa tan trong nước, rượu và glycerol.
Cấu trúc monohydrate của nó (FePO·HO) được xác định bằng phương pháp nhiễu xạ tia X. Tứ diện PO nối với bát diện [FeO(OH)] trong khối monohydrat. Các cation được phối hợp riêng lẻ bởi hai nguyên tử oxi từ hai bát diện [FeO (OH)] lân cận. Chỉ có một loại FeO được phát hiện trong dung dịch trung tính. Sắt pyrophosphate có thể được điều chế bằng axit photphoric, natri cacbonat và oxit sắt (III).
Cũng như nhiều chất liên quan khác, nó có thể được tạo ra bằng cách oxi hóa FePO4 bằng axit nitric: 3Na2CO3 + 3HNO3 + 6FePO4 🡪 3NaNO3 + 6Fe(NO3)3 + 3H2O.
Sắt pyrophosphate là một loại muối sắt có trọng lượng phân tử thấp, có thể được sử dụng qua quá trình thẩm phân phúc mạc và đi vào máu sau khi đi qua màng lọc máu. Nó không cần xử lý đại thực bào vì không giống như các phức hợp sắt thông thường, nó chuyển sắt trực tiếp sang transferrin, cho phép nó tránh được sự tắc nghẽn của lưới nội mô.
Nghiên cứu cho thấy rằng nó có thể cung cấp đủ chất sắt để thay thế lượng sắt bị mất đang diễn ra và duy trì mức Hb. Sắt pyrophosphate được chấp thuận của FDA vào năm 2015. Liệu pháp bổ sung sắt pyrophosphate không ảnh hưởng đến mức ferritin, điều này có thể là do nó không làm tăng lượng sắt dự trữ, gây ra tình trạng giảm nguy cơ quá tải sắt.

Cơ chế hoạt động
Chuyển hóa sắt toàn thân thường là một quá trình được điều hòa chặt chẽ, chủ yếu được thúc đẩy bởi sự kiểm soát cơ chế hấp thu sắt và sự phân phối sắt giữa các cơ quan và mô. Hepcidin làm giảm sự hấp thu sắt qua niêm mạc tá tràng và vận chuyển sắt đến transferrin từ cơ thể dự trữ bằng cách làm bất hoạt chất sắt tế bào ferroportin. Hepcidin tăng cao hạn chế việc xuất khẩu sắt từ quá trình tái chế hồng cầu già trong đại thực bào và giải phóng sắt dự trữ từ tế bào gan. Hepcidin tuần hoàn cũng tăng lên do viêm cũng như suy thận do giảm độ thanh thải.
Việc sử dụng sắt pyrophosphate dựa trên sự hình thành phức tạp mạnh mẽ giữa sắt và pyrophosphate. Ngoài ra, khả năng của pyrophosphate kích hoạt quá trình loại bỏ sắt khỏi transferrin, tăng cường vận chuyển sắt từ transferrin sang ferritin và thúc đẩy trao đổi sắt giữa các phân tử transferrin. Những đặc tính này làm cho nó trở thành một hợp chất rất thích hợp để dùng qua đường tiêm truyền, đưa sắt vào tuần hoàn và kết hợp với huyết sắc tố trong huyết tương.

Sorbitan isostearate là gì?
Tên quốc tế: Sorbitan isostearate
PubChem CID: 91886584
Tên gọi khác: Sorbitan, monoisooctadecanoate; 1-Deoxy-D-glucofuranose 6-(16-methyheptadecanoate)...
Este axit béo sorbitan là các axit béo mono, di- và triesters của axit béo và anhydrit hexitol có nguồn gốc sorbitol, trong đó Sorbitan isostearate được hình thành bằng sự kết hợp các phần của axit isostearic - một axit béo với thành phần đường sorbitol. Nó có thể được sản xuất từ nguồn gốc thực vật hay động vật, tuy nhiên hiện nay dạng sản xuất từ nguồn gốc động vật không còn được ưa chuộng, do đó dạng chiết xuất từ thực vật là chủ yếu và áp dụng rộng rãi.
Sorbitan isostearate có công thức hóa học là C24H46O6. Trọng lượng phân tử là 430.626 g/mol. Một liều lượng thấp khoảng 2% có thể được sử dụng để ổn định chất nhũ tương và độ an toàn của nó đã được thiết lập ở nồng độ lên đến 25%, mặc dù Sorbitan isostearate hiếm khi được sử dụng ở nồng độ trên 10% trong các công thức chăm sóc da.
Tính chất của Sorbitol isostearate:
-
Tương tự như axit béo lỏng isostearic axit;
-
Hoạt động như một chất làm sạch nhẹ và chất nhũ hóa;
-
Giúp ổn định công thức nước trong dầu;
-
Không dễ bị vỡ khi tiếp xúc với không khí.
Điều chế sản xuất Sorbitan isostearate
Các este sorbitan nói chung được tạo ra bằng cách phản ứng polyol sorbitol với một axit béo, cụ thể sorbitan isostearate được tạo ra từ isostearic acid và sorbitol. Cả sorbitol và axit béo đều có nguồn gốc tự nhiên và được sử dụng trong các sản phẩm mỹ phẩm.
Từ thành phần hóa học được chế xuất, Sorbitan isostearate sẽ tham gia vào dây chuyền sản xuất ra các sản phẩm làm đẹp từ sản phẩm chăm sóc da, dưỡng ẩm da, đến sản phẩm phục vụ nhu cầu trang điểm của các chị em phụ nữ.
Cơ chế hoạt động
Sorbitan isostearate là một thành phần giúp nước và dầu trộn đều với nhau, còn gọi là chất nhũ hóa tạo ra chất nhũ tương. Nó đặc biệt được khuyên dùng cho các loại kem bảo vệ, kem dưỡng chăm sóc em bé và kem làm mềm da đa năng.
Sorbitan isostearate cũng giúp phân tán các hạt không hòa tan (ví dụ như sắc tố màu hoặc chất chống nắng kẽm/titanium dioxide). Do đó, Sorbitan isostearate là chất hoạt động bề mặt, dùng làm kem lót, giúp tán phấn khi trang điểm, đặc biệt giúp làm đều kem chống nắng và kem nền, dùng được cho hỗn hợp lạnh, khả năng chống phân cực dầu cực tốt.
Polyethylene glycol 400 là gì?
Polyetylen glycol (PEG) là sản phẩm được tạo ra từ oxit etylen ngưng tụ và nước có thể chứa nhiều dẫn xuất khác nhau và có nhiều chức năng khác nhau. Có nhiều loại PEG có tính ưa nước. PEG được sử dụng phổ biến như chất tăng cường độ thẩm thấu và được sử dụng nhiều trong các chế phẩm da liễu tại chỗ. PEG, cùng với nhiều dẫn xuất không ion của chúng, được sử dụng rộng rãi trong các sản phẩm mỹ phẩm như chất hoạt động bề mặt, chất nhũ hóa, chất làm sạch, chất giữ ẩm và chất dưỡng da.
Polyetylen glycol 400 (PEG 400) là loại polyetylen glycol có trọng lượng phân tử thấp với độc tính ở mức độ thấp. PEG rất ưa nước, vì vậy là một thành phần hữu ích trong công thức thuốc để tăng khả năng hòa tan và sinh khả dụng của các loại thuốc khó tan trong nước. PEG được sử dụng trong các dung dịch nhãn khoa để giảm bỏng, kích ứng và/hoặc khó chịu sau tình trạng khô mắt. PEG "400" chỉ ra rằng trọng lượng phân tử trung bình của PEG cụ thể là 400.
PEGyl hóa xảy ra khi PEG được gắn với nhiều loại thuốc protein, cho phép độ hòa tan cao hơn đối với các loại thuốc đã chọn. Ngoài ra, PEG như một loại thuốc nhuận tràng.
Điều chế sản xuất
Polyethylene glycol 400 (PEG) được sản xuất bởi phản ứng giữa nước với ethylene oxide, hoặc với ethylene glycol đồng thời với các oligomer của ethylene glycol. Phản ứng được xúc tác bởi các chất xúc tác cơ bản hay acid. Cả ethylene glycol và oligomer ưa chuộng hơn so với nước, vì có thể cho phép tạo ra các polymer với sự phân tán trọng lượng phân tử ở phạm vi hẹp. Độ dài của chuỗi polymer phụ thuộc tỷ lệ của những chất tương tác.
HOCH2CH2OH + n(CH2CH2O) → HO(CH2CH2O)n+1H
Tùy theo loại xúc tác tạo ra cơ chế của quá trình polymer hóa là cationic hoặc anionic. Cơ chế anionic được đánh giá tốt hơn vì có thể thu được PEG có độ phân tán thấp. Polymer hóa ethylene oxide là một quá trình tỏa nhiệt. Khi gia nhiệt tăng cao hay làm nhiễm bẩn ethylene oxide bởi chất xúc tác như kiềm hay oxide kim loại có thể phá hủy quá trình polymer hóa đồng thời có thể gây cháy nổ sau vài tiếng.
Cả Polyethylene oxide và polyethylene glycol cao phân tử tổng hợp do quá trình trùng hợp tạo nhũ. Phản ứng xúc tác với các muối hữu cơ của magie, canxi, nhôm. Muốn chặn sự kết tụ của các polymer có thể đưa vào một số phụ gia dạng chelate như dimethylglyoxime. Các chất xúc tác kiềm như Na2CO3, NaOH, KOH, được dùng điều chế các polyethylene có khối lượng phân tử nhỏ.
Cơ chế hoạt động
Polyethylene glycol 400 (PEG), tùy thuộc vào trọng lượng phân tử, có nhiều cơ chế hoạt động khác nhau. Đối với mục đích của PEG-400, cơ chế hoạt động trên các mô mắt sẽ là trọng tâm chính của cuộc thảo luận.
PEG-400 được coi là chất đo nước mắt, hoặc chất bôi trơn mắt tổng hợp giúp cải thiện một hoặc nhiều thành phần của màng lệ bằng cách tăng lượng nước mắt và độ ổn định và bằng cách bảo vệ bề mặt mắt chống lại sự hút ẩm.
Hydroxypropyl-guar (HPG) được sử dụng cùng với polyethylene glycol 400 (PEG) và propylene glycol (PG) như một chất tạo keo phù hợp với các bất thường của màng nước mắt và các bất thường hiện có trên bề mặt mắt.
PEG cung cấp chất bôi trơn và hoạt động như một chất hoạt động bề mặt bằng cách phủ lên mắt và tương tác với propylene glycol và các dung dịch khác giúp hoạt động như chất hoạt động bề mặt trên niêm mạc mắt. Điều này cho phép tạo ra các hiệu ứng nhẹ nhàng và lâu dài.
Các nghiên cứu gần đây liên quan đến phân phối thuốc dạng hạt nano đã chứng minh rằng PEG có thể đạt được sự phân phối thuốc bền vững. Việc đưa thuốc đến bề mặt niêm mạc là một thách thức đáng kể do sự hiện diện của lớp chất nhầy bảo vệ có tác dụng bẫy và nhanh chóng loại bỏ các phần tử lạ.
Các hạt nano được thiết kế để nhanh chóng vượt qua các rào cản niêm mạc (các hạt xuyên qua chất nhầy, “MPP”) đã được chứng minh là có triển vọng tăng cường phân phối thuốc và hiệu quả trên các bề mặt niêm mạc khác nhau. Các hạt xuyên qua chất nhầy được phủ nhiều bằng polyethylene glycol (PEG), bảo vệ lõi hạt nano khỏi sự kết dính với chất nhầy.
Polyetylen glycol, khi ở dạng tự do trong dung dịch, cũng có thể chứng tỏ lực hút đối với bề mặt của các loại túi, tế bào hoặc đại phân tử khác nhau, dẫn đến sự hấp phụ polyme và sau đó là lực đẩy hoặc lực hút, thông qua cầu nối, của các bề mặt hoặc túi - một lần nữa tùy thuộc vào nhiệt độ, trọng lượng phân tử và nồng độ của polyetylen glycol. Polyethylene glycol trọng lượng phân tử thấp (chẳng hạn như PEG-400) thường thúc đẩy các tế bào hoặc túi bám vào (lực hút cạn kiệt), polyethylene glycol trọng lượng phân tử cao khiến chúng đẩy lùi.
Pyridoxal là gì?
Pyridoxal (vitamin B6) là một thuật ngữ chung dùng để chỉ sáu hợp chất có thể chuyển đổi lẫn nhau, có chung cấu trúc 2-metyl-3-hydroxypyridine với các nhóm thế thay đổi ở vị trí C4 và C5, tức là pyridoxal, pyridoxamine, pyridoxine và các este phosphat tương ứng pyridoxal-5′-phosphate (PLP), pyridoxamine-5′-phosphate và pyridoxine-5′-phosphate.Trong đó, pyridoxal 5'-phosphate (PLP) là dạng hoạt động sinh học nhất và được sử dụng làm đồng yếu tố cho nhiều phản ứng enzym quan trọng.
Điều chế sản xuất Pyridoxal
Cho đến ngày nay, các vitamin B6 được tổng hợp hoàn toàn về mặt hóa học bằng cách sử dụng các hóa chất độc hại và đắt tiền.
Cơ chế hoạt động của Pyridoxal
Vitamin B6 ở dạng PLP, đóng vai trò chính hoạt động như một đồng yếu tố cho một số lượng lớn các enzym thiết yếu. Các enzym phụ thuộc PLP này xúc tác hơn 140 phản ứng enzym riêng biệt. Điều này nhấn mạnh sự đa dạng của các phản ứng hóa học mà các enzym phụ thuộc PLP thúc đẩy trong các sinh vật và một lần nữa cho thấy tầm quan trọng của vitamin B6.
Nhiều enzym phụ thuộc PLP xúc tác các bước quan trọng trong quá trình chuyển hóa acid amin, như đồng xúc tác quá trình chuyển hóa, tạo racemization, khử cacboxyl và các phản ứng loại bỏ α, β. Ví dụ, transaminase làm trung gian chuyển đổi các α- ketoacid thành acid amin và racemase acid amin tạo ra các D-amino acid từ các L-amino acid.
Một vị trí hoạt động khác của các enzym phụ thuộc PLP là chuyển hóa acid béo. Enzyme δ-6-desaturase (EC 1.14.19.3) xúc tác tổng hợp các acid béo không bão hòa quan trọng bằng cách khử bão hòa acid linolic và acid γ-linolenic.
Bên cạnh những vai trò này, PLP cũng đại diện cho một yếu tố đồng yếu tố quan trọng đối với sự phân hủy của carbohydrate dự trữ, chẳng hạn như glycogen. Glycogen phosphorylase phụ thuộc PLP (EC 2.4.1.1) làm trung gian phân hủy glycogen bằng cách giải phóng glucose từ glycogen.
Hơn nữa, hai enzym phụ thuộc PLP tham gia vào quá trình hình thành hemoglobin và sinh tổng hợp chất diệp lục. Ở động vật có vú và chim, axit δ-aminolevulinic được tổng hợp bằng hoạt động của enzym tổng hợp axit δ-aminolevulinic (EC 2.3.1.37) và ở thực vật và tảo nhờ hoạt động của glutamate-1-semialdehyde 2,1-aminomutase (EC 5.4.3.8).
Ngoài ra, ở thực vật, quá trình sinh tổng hợp phytohormone ethylene được kiểm soát bởi sự tổng hợp tiền chất 1-aminocyclopropane-1-carboxylic axit từ S -adenosylmethionine bởi các tổng hợp 1-aminocyclopropane-1-carboxylate phụ thuộc PLP (EC 4.4.1.14).
Ngoài chức năng như một đồng yếu tố cho các enzym phụ thuộc PLP, vitamin B6 còn được cho là hoạt động trực tiếp như một chất bảo vệ chống lại các loại oxy phản ứng, chẳng hạn như oxy đơn.
Trong khi nấm, thực vật, vi sinh vật cổ và hầu hết các vi khuẩn có khả năng tổng hợp vitamin B6 thì hầu hết các loài động vật, bao gồm cả con người, lại thiếu khả năng này và phải dựa vào nguồn cung cấp vitamin B6 từ bên ngoài.
Potassium Laureth Phosphate là gì?
Potassium Laureth Phosphate có tên gọi khác là Kali Laureth Phosphate. Potassium Laureth Phosphate là muối kali của hỗn hợp các este photphat của rượu lauryl đã oxy hóa với giá trị etoxy hóa trung bình từ 1 đến 3. Potassium Laureth Phosphate có công thức hóa học là C12H25K2O4P.
Potassium Laureth Phosphate tồn tại dạng chất lỏng dạng sệt màu trắng đục hoặc trong mờ với một lượng nhỏ tinh thể vẩy phosphate.
Điều chế sản xuất Potassium Laureth Phosphate như thế nào?
Alkyl phosphate có thể được điều chế bằng phản ứng của rượu béo với axit polyphosphoric để tạo ra alkyl phosphat tương ứng.
Thành phần phân tử ion trong công thức hay gặp nhất là muối của natri (sodium salts), sau đó là potassium.
Tùy vị trí gắn nhóm phosphate ta có các sản phẩm cụ thể như sau: Kali Laureth-2 Phosphate; Kali Laureth-3 Phosphate; Kali Laureth-4 Phosphate; Kali Laureth-7 Phosphate; Kali Laureth-8 Phosphate; Kali Laureth-10 Phosphate;
Cơ chế hoạt động Potassium Laureth Phosphate là gì?
Chất nhũ hóa chứa cả đầu ưa nước và ưa dầu. Khi bổ sung vào hệ dầu nước, phần đầu ưa dầu bao quanh giọt dầu, và phần ưa nước kết hợp với nước (hệ nước dầu ngược lại). Nhờ nguyên lý này, chất nhũ hóa sẽ làm giảm sự phân tách giữa dầu và nước, tạo lớp bảo vệ quanh pha dầu và giúp các giọt dầu đều và ngăn chúng đọng trở lại.
Trong mỹ phẩm, hệ nước trong dầu (W/O) là hệ nhũ tương cơ bản. Trong hệ nhũ tương này, dầu bao quanh nước, dầu tác động lên da trước sau đó đến nước, cả hai đều được hấp thụ vào da.
Nano Silver là gì?
Nano Silver (nano bạc) là một dạng hạt tồn tại của kim loại bạc, gồm các hạt bạc có kích thước nano khoảng từ 1-100 nanomet (kích thước này mắt thường không nhìn thấy được).
Hạt Nano Silver có tỉ lệ diện tích bề mặt lớn hơn hàng triệu lần so với kim loại bạc, nhờ đó mà tính chất đặc hiệu của bạc được tăng lên đáng kể.
Màu sắc của dung dịch Nano Silver thay đổi từ vàng tới đỏ sẫm và có thể là màu gần như đen khi nồng độ lên tới 5,000 ppm. Lưu ý là các loại bột bán trên thị trường không chứa hạt nano do nano bạc không tồn tại ở thể rắn.
Điều chế sản xuất Nano Silver
Kích thước, hình thái và tính ổn định của các nano silver sẽ khác nhau tùy theo phương pháp được tổng hợp. Có ba phương pháp tổng hợp nano silver chính là tổng hợp vật lý, tổng hợp hóa học và tổng hợp sinh học.
Trong đó, tổng hợp sinh học là phương pháp xanh và thân thiện với môi trường (do quá trình khử không sử dụng enzym tương tự như tổng hợp hóa học nhưng tác nhân khử là vi sinh vật hoặc thực vật). Tuy nhiên, cần thận trọng với phương pháp này vì nó có thể làm lây nhiễm vi khuẩn, đặc biệt là ứng dụng trong y tế.
Cơ chế hoạt động của Nano Silver
Nhờ đặc tính kháng khuẩn của ion bạc và diện tích bề mặt lớn của các hạt nano mà nano silver có khả năng kháng khuẩn mạnh. Tùy theo nồng độ và kích thước mà hiệu quả của các hạt nano bạc sẽ khác nhau, chẳng hạn nồng độ cao sẽ hiệu quả tốt hơn.
Trong khi đó, cơ chế chống nấm nano silver có được là do chúng có thể phá vỡ màng tế bào và ức chế quá trình nảy chồi. Tại nồng độ 0.1mg/lít (tương đương 0.1ppm) nano bạc có khả năng kháng nấm. Với mật độ 105 tb/lít nấm Candida albicans bị vô hiệu hóa hoàn toàn sau 30 phút tiếp xúc.
Cơ chế tác dụng trên virus nhờ khả năng ức chế các giai đoạn phát triển của tế bào virus. Nano bạc được coi là một tác nhân phổ rộng chống lại nhiều chủng virus và không gây đề kháng.
Marigold là gì?
Cúc vạn thọ là loại cây thảo mọc đứng, cao 0,6-1m, phân nhánh thành bụi có cành nằm trải ra. Lá cúc vạn thọ xẻ sâu hình lông chim, các thuỳ hẹp, dài, nhọn, khía răng cưa. Đầu hoa toả tròn, rộng 3 - 4cm hay hơn, mọc đơn độc hay tụ họp thành ngù; lá bắc của bao chung hàn liền với nhau; hoa màu vàng hay vàng cam, màu lông gồm 6 - 7 vẩy rời nhau hoặc hàn liền nhau. Hoa ở phía ngoài hình lưỡi nhỏ xoè ra, hoa ở phía trong hình ống và nhỏ.
Quả bế có 1 - 2 vẩy ngắn., cây ra hoa vào mùa đông cho tới mùa hạ. Calendula officinalis (Cúc vạn thọ) thuộc họ thực vật có tên Asteraceae hay Compositae. Những cánh hoa nhỏ được thu hoạch và làm khô vì nhiều tính chất dùng để làm thuốc. Mặc dù có rất nhiều loài hoa cúc vàng (marigold flowers) được trồng trên khắp thế giới, nhưng Calendula (cúc vạn thọ) được dùng để làm thuốc nhiều nhất. Nó có nguồn gốc ở Ai Cập và một phần của Địa Trung Hải nhưng bây giờ đã phát triển ở mọi châu lục, thường nở trong những tháng nóng của năm (từ tháng 5 đến tháng 10 ở Bắc bán cầu).
Một số nghiên cứu chỉ ra rằng tinh chất hoa cúc vàng (marigold flowers extract) chứa nhiều thành phần hoạt tính, bao gồm các chất chống oxy hoá và dầu dễ bay hơi. Cúc vạn thọ chứa chất chống oxy hóa dưới dạng flavonoid và carotenoids. Ở cánh hoa có nhiều chất chống oxy hóa và các axit béo như axit calendric và axit linoleic. Ở lá của cúc vạn thọ chứa lutein và beta-carotene, có chức năng chống oxy hóa mạnh mẽ.
Điều chế sản xuất
Một số nghiên cứu đã phát triển nhũ tương dầu/nước, sử dụng dầu Cúc vạn thọ (Calendula officinalis L) và rượu béo etoxyl hóa làm chất hoạt động bề mặt. Giá trị HLB cần thiết cho dầu cúc vạn thọ được xác định là 6,0. Các chất hoạt động bề mặt được liên kết trong các cặp ưa béo/ưa nước. Các chất hoạt động bề mặt ưa béo là Ceteth ‐ 2 và Steareth ‐ 2 và các chất hoạt động bề mặt ưa nước là Steareth ‐ 20, Ceteareth ‐ 20, Ceteareth ‐ 5 và Ceteth ‐ 10. Để xác định các pha tinh thể lỏng, các nhũ tương được phân tích bằng kính hiển vi ánh sáng phân cực. Độ ổn định vật lý được đánh giá bằng phương pháp lưu biến và phân tích tiềm năng zeta. Tất cả các nhũ tương đều có cấu trúc tinh thể lỏng dạng phiến. Kết quả cho thấy loại chất hoạt động bề mặt này có thể tạo ra tinh thể lỏng trong hệ thống, với sự khác biệt nhỏ về bề ngoài, ảnh hưởng đến độ ổn định vật lý, theo các phương pháp đã áp dụng.
Việc phân lập được thực hiện bằng cách chiết xuất dung môi tuần tự của T. patula những bông hoa. Một mẫu gồm 600g nguyên liệu thực vật đã được nghiền thành bột khô được chiết bằng 1,2-dichloroethane trong thiết bị Soxhlet trong 48 giờ cho đến khi mất màu. Phần còn lại sau quá trình chiết tách dichloroethane được tái chiết xuất bằng etanol (tỷ lệ dung môi/chất thực vật 1: 5) để phân lập các hợp chất có độ phân cực cao hơn.
Các dung môi được làm bay hơi trong chân không ở 40°C để tạo ra chất chiết thô dicloroetan và etanol. Tiếp tục tách các hợp chất riêng lẻ khỏi dịch chiết dicloetan được thực hiện bằng sắc ký cột trên cột silica gel với hệ dung môi cloroform-hexan. Quá trình rửa giải các phân đoạn từ cột được bắt đầu bằng hexan với sự gia tăng thêm hàm lượng cloroform trong hệ thống. Sự rửa giải với 3% cloroform trong hexan cho hợp chất 1. Hợp chất 2 có trong phần được rửa giải từ cột với 5% cloroform trong hexan.
Dịch chiết etanol được tách trên cột silica gel bằng cách rửa giải với dicloroetan/metanol bằng phương pháp sắc ký lớp mỏng (TLC) để xác định đặc điểm sơ bộ của các phân đoạn. Quá trình rửa giải được bắt đầu với dichloroethane với sự gia tăng từng bước sau đó của hàm lượng metanol trong hệ thống.
Rửa giải với metanol 2, 3, 5, 7 và 10% trong dicloroetan tạo ra các phần tương ứng là 1, 2, 3, 4 và 5. Sắc ký lại của phân đoạn 2 trên cột Sephadex LH-20 với metanol 2% trong cloroform với sự tách TLC tiếp tục tạo ra hợp chất 2 cũng được tìm thấy trong dịch chiết dicloetan. Hợp chất 3 thu được bằng cách sắc ký lại phân đoạn 5 trên cột silica gel được rửa giải bằng metanol 8% trong cloroform và tiếp tục được tinh chế trên cột polyamit bằng cách rửa giải bằng etanol trong nước.
Quá trình phân tách TLC được thực hiện bằng các tấm silica gel Merck (Đức). Tách các hợp chất ưa béo được thực hiện trong hệ dung môi của dichloroethane-methanol (9: 1) và chloroform-methanol (9: 1). Các hợp chất phân cực hơn từ chiết xuất etanol được tách ra trong hệ dung môi của cloroform/metanol/nước (26: 14: 3).
Các sắc ký đồ được kiểm tra dưới ánh sáng UV ở bước sóng 254 và 360 nm, trước và sau khi sử dụng thuốc thử nhuộm để phát hiện flavonoid. Các flavonoid được phát hiện dưới dạng các đốm vàng lộ ra sau khi nung nóng các tấm được phun bằng dung dịch nhôm clorua etanol 1%. Các hợp chất khác được phát hiện bằng cách phun các dung dịch axit sunfuric 20%. Sau khi nung nóng các tấm phun đến 100°C, các hợp chất được tiết lộ dưới dạng các đốm có sắc thái từ xanh lam đến xanh lục, tùy thuộc vào các hợp chất cụ thể.
Cơ chế hoạt động
Cúc vạn thọ Pháp (Tagetes patula L.) được sử dụng rộng rãi trong y học dân gian, đặc biệt để điều trị các rối loạn liên quan đến viêm. Tuy nhiên, cơ chế tế bào của hoạt động này cần được nghiên cứu thêm. Trong một số nghiên cứu tiềm năng của các hợp chất T. patula để làm giảm bớt căng thẳng oxy hóa trong các tế bào T lymphoblastoid Jurkat ở người bị thách thức với hydrogen peroxide. Chiết xuất thô của hoa cúc vạn thọ và các phân đoạn tinh khiết có chứa flavonoid patuletin, quercetagetin và quercetin và các dẫn xuất của chúng, cũng như carotenoid lutein, được đưa tiếp xúc với các tế bào Jurkat được thử thách với 25 hoặc 50 μ M H 2 O 2.
Hydrogen peroxide gây ra stress oxy hóa trong tế bào, biểu hiện là tạo ra các gốc superoxide và peroxyl, giảm khả năng tồn tại, chu kỳ tế bào bị bắt và tăng cường quá trình chết rụng. Sự căng thẳng đã được giảm bớt nhờ các thành phần cúc vạn thọ thể hiện khả năng loại bỏ gốc rễ cao và tăng cường hoạt động của các enzym chống oxy hóa liên quan đến việc trung hòa các loại oxy phản ứng.
Phần flavonoid giàu quercetin và quercetagetin cho thấy hoạt tính bảo vệ tế bào cao nhất, trong khi patuletin ở liều cao có tác dụng gây độc tế bào liên quan đến khả năng chống ung thư của nó. T. patulacác hợp chất tăng cường sản xuất interleukin-10 (IL-10) chống viêm và chống oxy hóa trong tế bào Jurkat. Cả khả năng loại bỏ gốc rễ trực tiếp và kích thích các cơ chế bảo vệ tế bào có thể làm nền tảng cho các đặc tính chống viêm của hoa cúc vạn thọ.
Chiết xuất ethanol từ hoa Calendula officinalis L. thể hiện tác dụng chống viêm thông qua việc ức chế các cytokine gây viêm (IL-1β, IL-6, TNF-α và IFN-γ), và nó đã được đề xuất để ức chế COX-2 thông qua ức chế gen enzym và tổng hợp prostaglandin sau đó.
Sản phẩm liên quan